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Early stage. Before the field is known as genetics.
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Gregor Mendel (1822-1884)

e Study variation in plants in his monastery's 2 hectares experimental
garden.

e Studying seven traits that seemed to be inherited independently of
other traits

» seed shape, flower color, seed coat tint, pod shape, unripe pod color, flower
location, and plant height

* Defined “recessive” and “dominant” traits based on their
segregation in crosses.
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Sir Francis Galton (1822-1911)

e Are traits hereditary?

* Population studies with the hypothesis:
“If traits are hereditary, relatives should be more similar to non-relatives.”

* Apply statistical methods to study human differences, intelligence
inheritance, and biological data.
* Pioneer of eugenics
* His book Hereditary Genius (1869) was the first social scientific attempt to

study genius and greatness. _ria7 FGs. PG,
* Variance (SD) to qualify the normal variation — & ] " > } > e {
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* Regression line and ‘r’ to represent the regression coefficient I 1
=> parent-offspring correlation to estimate the heritability Rl [ s
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William Bateson (1861-1926)

* Coined the term “genetics” to describe the study of heredity
and “epistasis” to describe the genetic interactions

e Embraced both discontinuous and continuous traits

* Unaware of Mendel’s argument for making large crosses to study
the inheritance of discontinuous traits. Later in his career
replicated Mendel’s work

 The Mendelian antagonist of the biometrical school of thinking




Thomas Hunt Morgan (1866-1945)

* Large-scale experimental Mendelian genetics
* Fruit fly (D. Melanogaster) to screen for mutants & the mechanical basis
of heredity

* Traits can be:
* Sex-linked and by genes on sex chromosomes

* Non-sex linked and by genes on other chromosomes

* Genes linked on chromosome
=> Crossover frequencies indicate the distance separating them

=> First genetic map in 1913 (morgan = unit of measurement)
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JBS Haldane (1892-1964)

 Demonstration of genetic linkage in mammals (mice), chicken, human

* Develop statistical methods for human genetics
e Using maximum likelihood for the estimation of human linkage maps
* Linkage theory for polyploid
* First estimates of mutation rate in humans

* Modern evolutionary synthesis

* Natural selection is a central mechanism in evolution
-> a mathematical consequence of Mendelian inheritance

e Central mathematical theory in population genetics




Ronald Aylmer Fisher (1890-1962)

* Statistician
* Analysis of variance (ANOVA)

* Fisher’s z distribution (z = %log F), F-distribution
* Popularize the maximum likelihood
* 5% threshold for p-values

* Geneticist

* Model how continuous trait variation (Biometric) could result from many discrete genes
(Mendelian)

Natural selection changes allele frequencies in the population
=> discontinuous Mendelian factors reconciled with gradual evolution

of natural selection

F-test
Fisher—Tippett distribution

Fisher-Tippett-Gnedenko
theorem

Fisher—Yates shuffle
Fisher—Race blood group
system

Behrens—Fisher problem
Cornish—Fisher expansion
von Mises—Fisher distribution
family allowance
Wright-Fisher model

Null hypothesis

Maximum likelihood estimation
Neutral theory of molecular
evolution

Particulate inheritance
Random effects model
Relative species abundance
Reproductive value

Sexy son hypothesis
Sufficient statistic
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Fundamental concept of quantitative genetics

Introduction to quantitative genetics



The essence

* Focus on quantitative traits

Statistics and phenotype centric

* Variation in phenotype -> use statistic to quantify the genetic contribution to this trait
variation

* Framework provided via Modern Evolutionary Synthesis

 AIM

* Decompose the genetic variance
* Prediction of selection responses

Mathematical central concept: heritability
* Proportion of variation that is due to genetics

Population based not individual!



Multiple genes & environmental factors
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Variation is everywhere




The genetics of trait variation

* Many genes and environment factors -> continuous trait distribution

e Aim: Study contribution by genetics to this quantitative trait variation in
populations using statistics
* Decompose trait variation to genetic/environmental contributions
* Predict selection responses in populations
* A trait from A allele frequency across many loci

* Assume infinitesimal model: each gene minor effect and minor A allele frequency during RA Fisher
selection (remain constant or not)

* Key concept: additive genetic variance

* Genetic variance transmittable from parents to offspring
* Heritability: proportion of total trait variation that is inherited



Decompose trait variation

Mostly environment Mostly genes Gene + Environment




Decompose trait variation in populations

* Basis: related individuals share genetic variants contributing to trait variation

* Statistical aim: identity how much more similar related individuals are (genetic
variance, 6#) than unrelated ones (environmental variance, o7)

9 5 Similarities:
Op = 0; + Of Full-sib -> Half-sib -> Unrelated
=> Quantify genetic/environmental variation

HaIf—sA@Lmilies

Full-sib Full-sib  Full-sib Full-sib




Go beyond additive variation

Depending on how individuals are related, different components of the genetic
variance can be estimated; additive (aj), dominance (05) and interaction (012).

of = of + of

of = of + o5 + of + of



Heritability

A mathematically defined concept

The broad-sense heritability:
The proportion of phenotypic variation due to genetics

The narrow-sense heritability: (more often used)
The fraction of phenotypic variance that can be attributedzto variation in the additive effects of genes

h2=U_A
2

Op
Not a static property of a trait or a population, it a statistical estimate that is
* Trait specific
* Population specific
* Dependent on the statistical approach used to estimate it

The heritability does not show whether genetics is important or not



Simply estimating the heritability: parent-offspring regression

* Galton’s experiment, 1889 1 — The medium ground finch

Geospiza fortis °
* Regress offspring phenotype on
mid-parent value
* Slope = heritability E 10 L
* “the resemblance between parent fi)
and offspring due to shared genes” =
>
£ 9F
&
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@)
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| | | |

8 9 10 11
Midparent bill depth (mm)

This figure is not done by Galton, just an example



Selection response

* Heritability is excellent for within-population prediction
* Benefits the process of breeding (predict selection response; R)

* It could also be another way to estimate the heritability

Parental population

X ip Phenotipic values
R = h%S

— S: Selection differential

R: Selection response
Offspring population :/ Y
/l

| Xf Phenotipic values




Molecular guantitative genetics

Introduction to quantitative genetics



Molecular quantitative genetics
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A genetic black box
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Quantitative genetics data on genotypes at individual loci

* Population genetics
* Vital ingredient of the modern evolutionary synthesis

* Focus on:
e genetic variation within and between populations
» contributions by genes and alleles to evolution
» genetic forces contributing to evolution by changing allele frequencies

* Molecular quantitative genetics

* Genotype data available on individual loci
* Embrace population genetics theory on individual genes/alleles
* Extend statistics modelling of phenotypic variation to defined loci



Genetic variation from individual loci

* Basis: the relationship between individuals = allele-sharing at genotyped loci

* Statistical aim: estimate variance explained by allele-sharing atloci 1:--n

» Additive genetic variance: 621, 02%,, -+, ajn

* Population level 2

a§=aj+a§

* Contribution fromlocilton

of =0f + 0+ -+ 07 + 0



Linkage & association mapping

What is linkage & association mapping?
* |dentify loci explaining genetic variance in a quantitative trait
* Estimate allelic effects and amount of contributed variance

* Same quantitative genetics models, different populations

Unrelated individuals
Highly fragmented chromosomes

Related individuals
Less fragmented chromosomes

I
I

rtt ot

Sparse markers Dense markers



Single-locus genotype-to-phenotype map

. ’ Genotype Phynotype
Smooth Wrinkled AA, ' 0, R=0
A1A1 A2A2 Quantitative genetics:
A/A, Set up a statistical model AA, ‘ 0,R+a+d (d=-1/2)
* Genotypes A;A; and A;A, mapped to the smooth phenotype
* Genotype A,A, mapped to the wrinkled phenotype Azhz ’ 1,R+2a(a=1/2)

Two allele substitutions from A; to A,
—> % wrinkles for each allele substitution

In algebraic notation:

G11 1 0 O R
Goo 1 2 0 d




What we are trying to do?

Offspring bill depth (mm)

s B 0 bl
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Highly Penetrant .
Mendelian X Common Variants
Large Mutations . with Large Effects Variant with
| @uwoummen & higher frequency &
con ). in cases than
5.0

Less Common controls
Moderate ) Variants with

Moderate Effects
Onor:

NOD2 Croh'sDisease)

©TNFRSFIA (Wutpe ciross)

B2 X/

Effect Size (Odds Ratio)

1 N QmmuypezmmmyCommon Variants
Small Rare Variants with with Small Effects . 2
12 Small Effects ; dentified by * |
N was g, 1
2 Presateconce) @ 2|
10 L 4 .
0.001 0.005 0.05 0.5

i

reomoncme.

i
| ] H
el 4 3
“Mutations”  Rare Low Frequency Common " “
a - ° " ¢

Allele Frequency



Challenges when studying individual loci

* Quantitative genetics is a way to study genetics in the population
- Useful for predicting selection responses, breeding, evolution

e How about individuals?

Quantitative Genetics
Gene del
Epistasis
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Challenges when studying individual loci

* Analyses rely on statistical models providing population-level statistics, in
particular, genetic effects and variances

e More reliable for Mendelian than Quantitative traits

 GWAS challenges:
* Missing heritability
* Failure of replication
* Inter-population applicability
 Statistical testing problems

* Why so difficult?

* Rare variants? Smaller effects than expected? Genetic interactions? ...?



The problem of rare variants & small effects

* A locus contributes to trait variation as:

o7 = 2pga?
Allele frequencies Additive genetic effect
o
Power « n—;
OR

=» To detect rare variants, or variants with small effects, need large n
(Motivated by this, sample sizes in many human studies today are >100k individuals)



Genetic interactions (epistasis)

Marginal Effect
Locus A

—

Marginal Effect
Locus B

o7 = 2pqa®
a=0>07=0

0.2

A
Power « n—
Og

Epistasis can make loci undetectable even at very large n
Challenge to replicate and interpret effects of loci in different populations



Missing heritability

* Heritability can be estimated using genomics data

relationships by average genome sharing or by sharizng of trait-associated SNPs

2

2 __0A—snp < B2 _ OA—ped
SNP — 2 ved — 2
Op Op

 GWAS variants accounts for little of the heritability
* True for most diseases, behaviors, and other phenotypes

* Could, for example, be due to the factors mentioned above
e Rare variants, small-effects or epistasis



Quality Control



Why quality control is important?

e We don’t live in an ideal world...

* Large-scale experiments generate both true results and a proportion of false
results

* Errors might come from any steps in the process
* Sample selection = cryptic relatedness, population structure
* Genotyping



An overview of QC steps

 Sample QC is aimed at the identification and removal of individuals with
* sex discrepancy
* low call rate
* excess genome-wide heterozygosity and homozygosity

e Variant QC is aimed at identification and removal or refinement of variants with
* low call rate

» deviation from Hardy-Weinberg Equilibrium (HWE)
* very low minor allele counts (MAC)



Sex discrepancy

* --check-sex option in PLINK

Report individuals for whom the sex recorded
in the data does not match the predicted sex
5 based on genetic data.

Reveal sex chromosome anomalies
e Turner syndrome (females having karyotype XO)
“ * Kleinfelter syndrome (male having karyotype XXY)

sity (44 probes)

Mean Y Chromosome Inten
0

The intensity plot
xx * Females should have low Y intensity and high X
~ 8 * Males show similar levels of X and Y




Missingness and Heterozygosity

* Genotypic call rate
* Per sample (individual) rate
* The number of non-missing genotypes is divided 2.
by the number of genotyped markers. .
* Heterozygosity Rate ]
* Per sample (individual) rate

* Excess heterozygosity: Possible sample
contamination

-----------------------------------------------------------------------------------

Heterozygosity rate
0.45
|

* Less than expected heterozygosity: Possibly S ——— e
inbreeding L
" oo oo os 1'

Proportion of missina aenotvypes



HWE, Genotype Call Rate, and MAF (variant level)

Freq

Freq

Freq

1e+0

Oe+00

0 600

0 6000

% ‘ ‘ Hardy-Weinberg -log(p)
| | | | 1
0 5 10 15 20
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j o erﬂfﬂ [ ‘
I | | | |
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Commonly used tools

* GATK: Genome Analysis Toolkit (https://gatk.broadinstitute.org/hc/en-us)
e VCFtools: https://vcftools.github.io/index.html

* R

* PLINK



https://gatk.broadinstitute.org/hc/en-us
https://vcftools.github.io/index.html

GATK

Raw Unmapped Reads
uBAM or FASTQ i

1
[ Map to Reference ]

Raw Mapped Reads

{«

1
Mark Duplicates
1

Recalibrate Base
[ Quality Scores ]

v
Analysis-Ready Reads

{

Analysis-Ready Reads %

Call Variants Per-Sample
HaplotypeCaller in GVCF mode

T
T
T
T

l-[ Consolidate GVCFs )—J

Joint-Call Cohort
GenotypeGVCFs

‘ Raw SNPs + Indels [ \

‘ Raw SNPs + Indels [ 1] \

[ Filter Variants ]
1

[ Refine Genotypes
1

[ Annotate Variants ]

v

‘ Analysis-Ready [ | \

1
[ Evaluate Callset ]

o /o

[ Troubleshoot ] [ Use in project ]

Best Practices for SNP and Indel discovery in germline DNA

- leveraging groundbreaking methods for combined power

and scalability.



VCFtools

* Easy to use with a great manual: https://vcftools.github.io/man latest.html

vcftools --vcf raw.vct
—--mac
--minQ
—-minDP
--remove-indels / --keep-only-indels
--min-alleles 2 --max-alleles 2
--max-missing
—--maf


https://vcftools.github.io/man_latest.html

R packages

 plinkQC: https://meyer-lab-cshl.github.io/plinkQC/
* GenABEL: https://github.com/GenABEL-Project/GenABEL

* snpMatrix:
https://www.bioconductor.org/packages//2.7/bioc/html/snpMatrix.html

* Write your own command?


https://meyer-lab-cshl.github.io/plinkQC/
https://github.com/GenABEL-Project/GenABEL
https://www.bioconductor.org/packages/2.7/bioc/html/snpMatrix.html

Plink

Option
--check-sex
--remove
--maf
--hwe
--missing
--geno

--mind

Description
check for sex discrepancy
removes samples in the list
filters out SNPs with minor allele freq below threshold

filters out SNPs with HWE exact test p-value below threshold

investigate missingness per individual and per SNP

filters SNPs with genotyping frequency below the threshold

exclude individuals with genotype rates below the threshold



GWAS

The discovery of associations between certain variations in the genetic code and
the physical trait



Statistical association

Association and correlation

Associated Not associated
(1), . (2)
.\. j .’0.”."&.”00‘.—0
N Y '
s
o Correlated
(3) , 4
0000%%5s o . 5. o ‘../..’0»0
° 8 000 o

Association is a very general
relationship

— One variable provides information
about another (4x -> Ay)

Correlation is more specific
- When displaying an increasing or
decreasing trend

(X >y orxP™->yd)

Altman et al. (2015). https://www.nature.com/articles/nmeth.3587



https://www.nature.com/articles/nmeth.3587

Direct and indirect association

Indirect association Direct association

Marker LINKAGE

Phenotype



Erosion of Linkage Disequilibrium (LD)

A B A 8
_— —_—

& jy m— 4 b a. There is a polymorphic locus with

{ % ! % alleles A and a.

a : b. A mutation occurs at a nearby locus,

d " ! changing an allele B to b.
—r—— 1 c. Association between alleles at the two

. ) c 5 loci gradually be disrupted by

{ } —_—— recombination between the loci.

5 . lf— i d. Decline the LD among the markers in

{ { % the population as the recombinant

a B a >< B chromosome (a, b) increases in

{ : ; frequency.

Nature Reviews | Genetics

Ardlie et al. (2002). https://www.nature.com/articles/nrg777
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Linkage Disequilibrium (LD)
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Variances

Broad-sense heritability: H2=Vs/Vp

Phenotypic variance (V)

Genetic variance (V)

Environmental sources (V)

Additive variance (V,)

Dominance variance (Vp)

Epistasis variance (V,)

Narrow-sense heritability: h2=V,/V;




What are genome-wide association studies?

controls

cases

Variant Frequency
Cases - 58.3%

¢ Controls - 16.7%

* |dentify the association between
genetic variance and phenotypic
variance

* Cases have a higher frequency of
carrying causal variants (and highly
liked markers)



p-value

More likely observation

Y

P-value

A

Very un-likely

Very un-likely
observations

observations

Observed

data point\
& :

Set of possible results

Probability density

A p-value (shaded green area) is the probability of an observed
(or more extreme) result assuming that the null hypothesis is true.



Manhattan plot

St ronger GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person
Association RGS16
15 + Il
g TOX3
= AK5 z
S . VIP
Q10 APHIA PLOLT : |
5 - HCRTR2" FBXL13
g |- Eihe DLX5 ALG108B RASD1
L i & I | FBXL3 . NOL4
I - s} 5 L] ! 2 . :
5 i —
4 5 6 7 8 9 10 11 12 14 16 18 20 22 X

Chromosome

Hu et al. (2016). https://www.nature.com/articles/ncomms10448
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Q-Q plot

comparing two probability distributions by plotting their

guantiles against each other

15 20 25

Observed —10gq(p)
10

Expected —log,,(p)

Continuous uniform distribution

Observed —10g1q(p)

Truth

Decision

HO is true H1is true
(non-carrier) (carrier)
Fail to reject HO Correct decision Type Il error

(negative) (true negative) (false negative)
Reject HO Type | error Correct decision
(positive) (false positive) (true positive)

Expected —log,,(p)




Type of GWAS

Populations used in GWAS
* Population-based
* Family-based
 |solated population

Phenotype measurement
* Qualitative (Usually binary; affected / not affected)
* Quantitative

The complexity of genetic effect
* Single marker (one marker a time)
e Multi-marker (multivariate method)



Association study example (I)

e Population-based GWAS

e Qualitative measurement (affected / not affected)
* Single marker

Observed Case Control Total
AA 20 50 70
Aa 20 30 50
aa 60 20 80
Total 100 100 200




Association study example (I)

Observed Case Control Total
AA 20 50 70
Aa 20 30 50
aa 60 20 80
Total 100 100 200
Expected (No effect) | Case | Control | Total
AA 35 35 70
Aa 25 25 50
aa 40 40 80
Total 100 100 200



Association study example (I)

The test statistic for the association study, in this case, is the y? test.

Chi-Square Test
* Association between two qualitative variables is statistically significant

* Hy: There is no difference between the two variables
H,: There is a significant difference between the two variables

* The test statistic: determine whether the difference between the observed and expected
values is statistically significant

(Observed — Expected)?
Expected

x° =




Association study example (I)

35 35 25

\%

dat = data.frame(case = c(20, 20, 60), control = c(50, 30, 20))
dat
case control

\%

1 20 50
2 20 30
3 60 20
> chisq.test(dat)

40

Observed Case Control Total Expected Case Control Total
AA 20 50 70 AA 35 35 70
Aa 20 30 50 Aa 25 25 50
aa 60 20 80 aa 40 40 80

Total 100 100 200 Total 100 100 200
2 2 2 2
2 _ (20 — 35) 4 (50 — 35) N (20 — 25) - (20 — 40) 3486

Reject Hy. There is a difference between case and control.

Pearson's Chi-squared test

data: dat /

X-squared = 34.857, df = 2, |p-value = Z.697e—®8|




Linear regression
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Linear regression
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Linear regression

125 -
[ J
— What is the pquation of the line?
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Linear regression

error
y=pot+Bix+e
fo:y intercept f1: slope
*Hy:Bo=0vs.Hy: B # 0 *Hy:fB1=0vs.H;: 6, #0

804

yl=—17.5791 + 3.9324x

Distance

404

Estimate Std. Error t value Pr(ltl)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

5 10 15 20 25



Association study example (Il)

e Quantitative traits (such as blood glucose levels, BMI)

* Single marker

Use simple linear regression model for this study.
Yy = Poi + BgiXgi + €
i =1, .., number of SNPs
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Zhao et al. (2011) https://www.nature.com/articles/ncomms1467



Statistical Power
https://www.nature.com/articles/s41437-019-0205-3
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Statistical Power

Statistical power = The ability to correctly reject the null hypothesis

Critical Value

Null Hypothesis Alternative Hypothesis

Correct Decision
Effect Exists

Correct Decision
No Effect




Variance

Phenotypic variance (Vp)

Genetic variance (Vg) Environmental sources (V)

— —y — —Y
Y=u+e,—>Y=pu+G+e,—>Y=pu+G+E+es—>Y=u+G+P+E+e,—»Y=u+G+K+P+E+e,

- —5— T — 5




Derivation (simple linear model)

Intercept

. regression coefficient
The linear model Response

y = M -I— Z’}/ —I— e <+—residual error vector N (0, c%)
Hy:y=0vs.Hi:y#0 T

independent variable

Let ¥ be the estimated regression coefficient, its variance can be shown as:

o o
var(§) = of = — ~—
n
j=1(Zj — Z) noz
. « o 2 2 T2
The Wald chi-square test statistic: W = = Nno; =
var(r) o2

(9-6,)°

Wald test: W = var(0) You don’t need to memorize this



Derivation (simple linear model)

r2 r2

= noz

W_

~ var(r) o2

« When n is sufficiently large = W~x?(1) under the null model
=> To simplify, use the central y?(1) distribution as the null distribution
e The critical value for the test: y7_,

* If the null hypothesis rejected, the Wald-test will follow a non-central y? distribution
with a non-central parameter
14
5 = no? (—)

o
If the independent variable is standardized prior to the analysis 2 O'ZZ =1

s=n()

2



Derivation (simple linear model) BB\ v

Have a look at the non-centrality parameter (= statistical power)
2
s=n(})
o

 Sample size: n
e Sample size T~ — Power P

 Effect size: (K)z

o)
* (Regression coefficient / Residual error)?

» Effect size > — Power P



Derivation (simple linear model)

Another way to represent the size of the QTL is by the heritzability.

()

QTL VG + VE ]/2 + 0'2 (
Therefore, ,
-2
And the non-central parameter ,
h
5 = 7 QTL

Y

0}

)2+1



Derivation (simple linear model)

Have a look at the non-centrality parameter2
O0=n Mr
— 2

e QTL size
e QTLsize P> — Power I

https://www.sciencedirect.com/science/article/pii/S2214540021000207



https://www.sciencedirect.com/science/article/pii/S2214540021000207

Kinship

* The probability that a random gene from subject A is identical with a gene at the
same locus from subject B is the coefficient of kinship

y—

4 7< 4 5 ———— 6

I I
7 8 9 10
Relationship Example ¢ ko ki1 ko
Identical Twins 7-8 0.5000 0 0 1.00
Full-siblings 9-10 02500 0.25 0.50 0.25
Parent-child 1-5 0.2500 0 100 O

Grandparent-grandchild 1-10 01250 050 050 O
First cousins 8-9 0.06256 075 025 O




A special kinship matrix

We simplify the kinship matrix so that a general trend can be found.

Assume that the kinship matrix has thf following special structure

p P
o
p p . 1

p represents the correlation between any pair of individuals. Under this
assumption, the eigenvalues are:

di=n—-mn-1(p—-1),dy=d3==dp,=1-p

because Zd] —n (the sum of all eigenvalues of a correlation matrix equals to the sample size)



A special kinship matrix

The effective sample size is definednas
~1
ng =2 (dia+1) (A+1)
J=1
Effective sample size will equal the actual sample size if the polygenic variance
were 0 (A = 0).

Calculate this by the eigenvalues we have
1

_(A+1)[(1 p)A+1 (1+np—p)A+1

https://www.nature.com/articles/s41437-019-0205-3.pdf



https://www.nature.com/articles/s41437-019-0205-3.pdf

A special kinship matrix

Substituting the effective size into our non-centrality parameter formula, we have

§=0A+1) n—1 ! é”
B (1—p)/1+1 (1+np—p)A+111—hd,




A special kinship matrix

Have a look at the non-centrality parameter under some special cases.

* If the polygenic variance approaches to nil, A — 0.

hérL
lim § = n —2 >
A-0 1 - hjrt
* If p —> 1 and n is relatively large
héTL
limé =n(A+ 1) >
fp—0 Adding the kinship matrix
_ hcngL in GWAS boost the power
limdé =n

50 1 — hczzTL by a factor (1 + 1)



Population structure

e Caused by population heterogeneity (or admixture) represented by multiple
ethnic groups or subpopulations within the association population

* An example:
* Alocus is fixed to alleles that are unique to subpopulations

» Subpopulations are strongly associated with the trait
=» The association observed may be caused by subpopulation (false positive)



Population structure

Consider the Q + K mixed model for GWAS
y=ut+Qn+zZy+e
(Q is the design matrix for population structure (PCA or cluster analysis)

The non-centrality parameter for the Wald test is
5 4 ( TN o hom
= =Ng|1l— 2 r ) o
var(y) =1 2% A1 — hgre

= Population structure effects reduce the non-centrality parameter

= Lower the power

rzzl.: the squared correlation between matrix Q and Z



Simulation results

* Three levels of polygenic contribution

& .
- are represented by the ratios of the
. polygenic variance to the residual
e O i variance.
2 2
2 84 .| * hgrL T — Power T
S A=1
g Z)r_ o A=0
=
7))
N ]
o
o
o

I I I I I I I
000 001 002 003 004 005 0.06

QTL size (har)



Simulation results

0.4 0.6 0.8 1.0

Statistical power

0.2

0.0

—— Iqz= 0.0
—— rqz=0.5
—— Iqz= 0.9

0.000 0.005 0.010 0.015 0.020 0.025 0.030

| | [ I [ [

QTL size (hZy,)

* Three levels of correlation between
population structure (Q) and the
genotypic indicator variable (Z)



Simulation results

* The correlation between population

L .
- structure (Q) and the genotypic
- indicator variable (2) is 0.
®
O
3 © _
%’ < —6— structure included
O —o— structure ignored
5 T
4§ o
wn
N
(@)
A=1
Q N rQZ:O
o
| I | | I | I
0.000 0.010 0.020 0.030

QTL size (h3y,)



Principal component analysis (PCA)

PCA is defined as an orthogonal linear transformation that transforms the data to a
new coordinate system such that the greatest variance scalar projection of the data
comes to lie on the first coordinate (aka the first principal component; PC1), the
second greatest variance on the second coordinate (PC2), and so on.
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Other factors affection statistical power

* Quality of phenotype
* Quality of genotype
* Genders

e Seasons / Environments



How could we do to increase statistical power

 Effect size: not much to do
* Increase rare alleles: a designed mating system can increase the frequency

* Sample size: increase sample size if it is affordable

Population structure: a proper sampling population or better statistic model

Experimental design



Multiple testing problem

* We control the type | error by setting the significant level «
=>» The risk of making the type | error is «

* If we perform n hypothesis test and a = 0.05.
* The probability of not making any type | erroris (1 — 0.05)"
* The probability of making at least one type l erroris 1 — (1 — 0.05)"

Prob(Type | error)
02 04 06 0.8 1.0

| I 1 |
0 50 100 150

# Hypothesis



Multiple testing problem

Two common solutions

* Bonferroni correction
For n tests and a desired significant level a. The Bonferroni corrected threshold ag =

 False discovery rate (FDR)

Use the expected number of false positives to set the significance level. For n tests and a
desired significant level a, the FDR is defined in terms or number of cases where the null
hypothesis is rejected (R)

If p-value; < a% —> Significant



